Quasi-cyclic self-dual codes of length 70

نویسنده

  • Alexander Zhdanov
چکیده

In this paper we obtain a number of [70,35,12] singly even self-dual codes as a quasi-cyclic codes with m=2 (tailbitting convolutional codes). One of them is the first known code with parameters Beta=140 Gamma=0. All codes are not pure double circulant i.e. could not be represented in systematic form. Keywords—convolutional encoding, quasi-cyclic codes weight enumeratorg, double circulant

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of quasi-cyclic self-dual codes

There is a one-to-one correspondence between l-quasi-cyclic codes over a finite field Fq and linear codes over a ring R = Fq[Y ]/(Y m − 1). Using this correspondence, we prove that every l-quasi-cyclic self-dual code of length ml over a finite field Fq can be obtained by the building-up construction, provided that char (Fq) = 2 or q ≡ 1 (mod 4), m is a prime p, and q is a primitive element of F...

متن کامل

New self-dual codes of length 72

In this paper we obtain at least 61 new singly even (Type I) binary [72,36,12] self-dual codes as a quasi-cyclic codes with m=2 (tailbitting convolutional codes) and at least 13 new doubly even (Type II) binary [72,36,12] self-dual codes by replacing the first row in each circulant in a double circulant code by "all ones" and "all zeros" vectors respectively. Keywords—convolutional encoding, qu...

متن کامل

Codes Closed under Arbitrary Abelian Group of Permutations

Algebraic structure of codes over Fq , closed under arbitrary abelian group G of permutations with exponent relatively prime to q, called G-invariant codes, is investigated using a transform domain approach. In particular, this general approach unveils algebraic structure of quasicyclic codes, abelian codes, cyclic codes, and quasi-abelian codes with restriction on G to appropriate special case...

متن کامل

Hermitian self-dual quasi-abelian codes

Quasi-abelian codes constitute an important class of linear codes containing theoretically and practically interesting codes such as quasi-cyclic codes, abelian codes, and cyclic codes. In particular, the sub-class consisting of 1-generator quasi-abelian codes contains large families of good codes. Based on the well-known decomposition of quasi-abelian codes, the characterization and enumeratio...

متن کامل

Cyclic codes over $\mathbb{Z}_4[u]/\langle u^k\rangle$ of odd length

Let R = Z4[u]/〈u〉 = Z4 + uZ4 + . . . + uZ4 (u = 0) where k ∈ Z satisfies k ≥ 2. For any odd positive integer n, it is known that cyclic codes over R of length n are identified with ideals of the ring R[x]/〈x − 1〉. In this paper, an explicit representation for each cyclic code over R of length n is provided and a formula to count the number of codewords in each code is given. Then a formula to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1704.01512  شماره 

صفحات  -

تاریخ انتشار 2017